Semismooth Newton methods for the cone spectrum of linear transformations relative to Lorentz cones

نویسندگان

  • Jein-Shan Chen
  • Shaohua Pan
چکیده

We propose two semismooth Newton methods for seeking the eigenvalues of a linear transformation relative to Lorentz cones, by the natural equation reformulation and the normal equation reformulation, respectively, and establish their local quadratic convergence results under suitable conditions. The convergence analysis shows that the method based on the natural equation formulation is not influenced by the asymmetry of linear transformations, but the one based on the normal equation formulation suffers from this easily. Numerical experiments indicate that the method based on the normal equation formulation is very effective for the Lorentz eigenvalue problem of Z-transformations, and the method based on the natural equation formulation is very promising for those Lorentz eigenvalue problems of general linear asymmetric transformations with dimension less than 200, if one aims at finding at least one Lorentz eigenvalue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clarke Generalized Jacobian of the Projection onto Symmetric Cones and Its Applications

In this paper, we give an exact expression for Clarke generalized Jacobian of the projection onto symmetric cones, which is linked to rank-1 matrices. As an application, we employ the projection operator to design a semismooth Newton algorithm for solving nonlinear symmetric cone programs. The algorithm is proved to be locally quadratically convergent without assuming strict complementarity of ...

متن کامل

On the Local Convergence of Semismooth Newton Methods for Linear and Nonlinear Second-Order Cone Programs Without Strict Complementarity

The optimality conditions of a nonlinear second-order cone program can be reformulated as a nonsmooth system of equations using a projection mapping. This allows the application of nonsmooth Newton methods for the solution of the nonlinear second-order cone program. Conditions for the local quadratic convergence of these nonsmooth Newton methods are investigated. Related conditions are also giv...

متن کامل

Semismooth Methods for Linear and Nonlinear Second-order Cone Programs

The optimality conditions of a nonlinear second-order cone program can be reformulated as a nonsmooth system of equations using a projection mapping. This allows the application of nonsmooth Newton methods for the solution of the nonlinear second-order cone program. Conditions for the local quadratic convergence of these nonsmooth Newton methods are investigated. Related conditions are also giv...

متن کامل

Some Global Uniqueness and Solvability Results for Linear Complementarity Problems Over Symmetric Cones

This article deals with linear complementarity problems over symmetric cones. Our objective here is to characterize global uniqueness and solvability properties for linear transformations that leave the symmetric cone invariant. Specifically, we show that, for algebra automorphisms on the Lorentz space Ln and for quadratic representations on any Euclidean Jordan algebra, global uniqueness, glob...

متن کامل

Z-transformations on proper and symmetric cones Z-transformations

Motivated by the similarities between the properties of Z-matrices on Rn + and Lyapunov and Stein transformations on the semidefinite cone S+, we introduce and study Z-transformations on proper cones. We show that many properties of Z-matrices extend to Z-transformations. We describe the diagonal stability of such a transformation on a symmetric cone by means of quadratic representations. Final...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014